Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

نویسندگان

  • Uisik Kwon
  • Bong-Gi Kim
  • Duc Cuong Nguyen
  • Jong-Hyeon Park
  • Na Young Ha
  • Seung-Joo Kim
  • Seung Hwan Ko
  • Soonil Lee
  • Daeho Lee
  • Hui Joon Park
چکیده

UNLABELLED In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells.

Hybrid organic/inorganic perovskite solar cells have been rapidly evolving with spectacular successes in both nanostructured and thin-film versions. Herein, we report the use of a simple sol-gel-processed NiO nanocrystal (NC) layer as the hole-transport layer in an inverted perovskite solar cell. The thin NiO NC film with a faceted and corrugated surface enabled the formation of a continuous an...

متن کامل

Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.

State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies app...

متن کامل

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite...

متن کامل

Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability.

A key challenge in photovoltaics today is to develop cell technologies with both higher efficiencies and lower fabrication costs than incumbent crystalline silicon (c-Si) single-junction cells. While tandem cells have higher efficiencies than c-Si alone, it is generally challenging to find a low-cost, high-performance material to pair with c-Si. However, the recent emergence of 22% efficient pe...

متن کامل

Overcoming the Limitations of Sputtered Nickel Oxide for High‐Efficiency and Large‐Area Perovskite Solar Cells

Perovskite solar cells (PSCs) are one of the promising photovoltaic technologies for solar electricity generation. NiO x is an inorganic p-type semiconductor widely used to address the stability issue of PSCs. Although high efficiency is obtained for the devices employing NiO x as the hole transport layer, the fabrication methods have yet to be demonstrated for industrially relevant manufacturi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016